Органоиды клетки. строение и функции

Функции

В зависимости от расположения и особенностей все мембраны выполняют собственные функции, тем не менее по выполняемой работе они сходны.

Роль плазмалеммы:

  1. Барьерная. Эта функция является основной и выполняется всеми видами клеточных мембран. Особенно она важна для наружной оболочки: благодаря ей клетка поддерживает форму, гомеостаз, стабильность внутреннего содержимого, целостность.
  2. Транспортная. Второе важнейшее назначение — активный и пассивный перенос веществ изнутри клетки в наружную среду и обратно. Механизмы этого переноса самые разнообразные, транспорт может происходить как через каналы, образуемые пронизывающими молекулами белков, так и с помощью переносчиков. Также различают пассивное (по градиенту концентрации, например диффузия газов), и активное (против градиента, с затратой выработанной клеткой энергии).
  3. Рецепторная. Эта роль возложена на пронизывающие белки, которые особым образом связаны с углеводными цепочками (гликополисахаридами). Образовавшиеся таким образом рецепторы, которые по своему строению и являются гликопротеидами, образуют комплекс с гормонами, затем активируются катализаторы, и такая система запускает механизмы поступления или вывода различных веществ.
  4. Обмен информацией. Способность клетки контактировать оболочками, обмениваясь друг с другом информацией сродни рецепторным реакциям. Благодаря им происходит стимуляция роста или торможения и иные физиологические процессы. Такой контакт может быть механическим (простое или замковое смыкание оболочек) и при помощи специальных образований — синапсов. Передающиеся через синапсы сигналы могут быть как механическими, так и электрическими.
  5. Энергетическая. Плазмалемма митохондрий и пластид (хлоропластов) отвечает за синтез аденозинтрифосфорной кислоты — аккумулятора клеточной энергии.

Особо следует отметить эндо- и экзоцитоз. Вследствие этих мембранных механизмов в клетку могут поступать не только целые молекулы больших размеров, но и неизмененные, сторонние клетки. Примером эндоцитоза (обволакивания крупных частиц или капель жидкости, втягивание внутрь цитоплазмы и дальнейшая химическая дезактивация) может служить поглощение вредных и чужеродных молекул лейкоцитами.

Экзоцитоз — обратный транспорт. Благодаря ему ненужные, отработанные вещества окружаются плазмалеммами и выносятся наружу через поры.

Такое множество функций и разнообразие реакций, происходящих как внутри, так и снаружи плазмалеммы, возможно за счет их упорядоченного физико-химического строения.

Что такое клеточная мембрана

Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.

Структура клеточной мембраны

Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.

Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.

Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1. 

Рисунок 1: Подробная схема клеточной мембраны

Состав клеточной мембраны

Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.

Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.

Функция клеточной мембраны

Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.

Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.

викторина

1. Что является функцией клеточной стенки?A. Для поддержания тургорского давленияB. Для поддержки клеткиC. Чтобы контролировать, какие молекулы входят и выходят из клеткиD. Все вышеперечисленное

Ответ на вопрос № 1

D верно. Все это функции клеточной стенки.

2. Клетки какой группы организмов лишены клеточной стенки?A. ArchaeaB. бактерииC. животныеD. Грибы

Ответ на вопрос № 2

С верно. Животные клетки не имеют клеточных стенок; они имеют только полупроницаемую клеточную мембрану. Животные клетки могут двигаться легче без клеточной стенки.

3. У какого организма есть клеточная стенка, содержащая хитин?A. растенияB. морские водорослиC. ГрибыD. бактерии

Ответ на вопрос № 3

С верно. Клеточные стенки грибов содержат хитин, что делает их крепкими и жесткими. Хитин является полисахаридом, который также образует экзоскелеты некоторых насекомых и ракообразных.

Сравнительная характеристика клеток эукариот и прокариот

Вы можете увидеть сравнение по признакам прокариот и эукариот в таблице.

Признак Прокариоты Эукариоты
Размеры клеток Средний диаметр 0,5 —10 мкм Средний диаметр 10 — 100 мкм
Организация генетического материала
Форма, количество и расположение молекул ДНК Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме Обычно есть несколько линейных молекул ДНК — хромосом, локализованных в ядре. В интерфазном ядре (вне деления) хромосомы представляют собой хроматин: ДНК компактизируется в комплексе с белками
Деление
Тип деления Простое бинарное деление. Веретено деления не образуется Мейоз или митоз
Органеллы
Наличие мембранных органелл Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки Имеется большое количество одномембранных и двумембранных органелл

Плазмодесмы

Протопласты соседних клеток связаны между собой тонкими нитями цитоплазмы — плазмодесмами. Эти структуры присущи только растительным клеткам.

В нормальном состоянии плазмодесмы невидимы в световой микроскоп, однако, если стимулировать набухание оболочки плазмодесмы, становятся заметными, поэтому выявлены и описаны они были уже достаточно давно. Хотя детали строения плазмодесм изучены сравнительно недавно с помощью электронного микроскопа. Под электронным микроскопом плазмодесмы выглядят как узкие каналы (диаметром от 30 до 60 нм), выстланные плазматической мембраной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера — десмотрубочка, которая сообщается с эндоплазматическим ретикулом обеих смежных клеток.

Десмотрубка напоминает цитоплазматические микротрубочки или жгутики простейших. Она состоит из 11 спирально расположенных белковых субъедениц.

Вокруг десмотрубки локализируется цитоплазма, которая во многих типах плазмодесм непосредственно не соединяется с цитоплазмой клеток.

В плазмодесмах обнаружена АТФ — азная активность.

Наличие плазмодесм обеспечивает непрерывность цитоплазмы клеток, составляющих органы и ткани. Такая непрерывная система называется симпласт. Кроме того, за счёт плазмодесм обеспечивается единство эндоплазматической сети, переходящей из клетки в клетку. Единая эндоплазматическая сеть получила название эндопласт.

Таким образом, выделяется три непрерывных компартмента в растительных тканях — это:

  • единая цитоплазма — симпласт,
  • непрерывный ретикулум — эндопласт и соприкасающиеся между собой клеточные стенки, вместе с межклетниками составляют непрерывную систему — апопласт.

Размещаются плазмодесмы в стенке либо группами, либо равномерно разбросаны по всей стенке.

Исследования

Различные гипотезы строения клеточных мембран предлагались с 1902 года, когда было замечено, что липиды и некоторые другие органические вещества довольно легко проникают в цитоплазму.

Далее ход исследований можно разбить на этапы:

  1. В 1925 году было проведено экстрагирование липидов из эритроцитов и измерена площадь мономолекулярной пленки. Таким образом, впервые Гортер и Грендел показали, что мембраны структурно организованы в виде бимолекулярного слоя.
  2. 1935 г. — Даниэлли и Давсон показали миру модель «бутерброда», согласно которой плазмалемма имела три слоя (ломтики-пластинки белков с липидами с двух сторон и посередине пустота). Эта теория с успехом просуществовала до 1950 года, мало того, ее правомерность доказали при изобретении электронного микроскопа.
  3. 1960 г. — Дж. Робертсон окончательно сформулировал гипотезу трехслойной мембраны. Но каким образом происходит активный транспорт веществ через такую структуру, ученый внятно показать не смог.
  4. 1972 г. — сформирована жидкомозаичная модель, согласно которой плазмалемма имеет билипидное строение.

С этого года жидкомозаичная концепция строения мембран оставалась без особых изменений и только дополнялась исследованиями, проводящимися с помощью новейших научных методов — рентгено-структурного анализа, электронно-микроскопического исследования, метода «замораживание-скол-травление» и других.

Цитоплазма как составная часть бактериальной клетки. Органеллы клетки.

Цитоплазма занимает
центральную часть клетки. Это жидкая
коллоидная система, на 75-80% состоящая
из воды. Остальное приходится на долю
белков, жиров, углеводов. Цитоплазма
неоднородна. В ней имеются гранулы или
включения 2-х типов:

1 тип
гранул обязателен для клетки, т.к.
выполняет постоянную функцию и их потеря
приводит клетку к гибели, такие гранулы
называются органоидами или органеллами.

2 тип
гранул необязателен для клетки, не
выполняет постоянной функции и их утрата
не приводит клетку к гибели. Такие
гранулы называются запасными питательными
веществами. К ним относятся капельки
жира, зерна крахмала, гликогена, волютина,
кристаллики минеральных веществ (серы,
железа, кальция). Они накапливаются в
благоприятных условиях жизни и расходуются
по мере голодания клетки.

Важнейшее значение
в клетке имеют органоиды. К ним относят:

  1. Рибосомы –
    шарообразные тельца, состоящие из белка
    и РНК, в которых происходит биосинтез
    белка клетки (фабрики белка).

  2. Мезосомы –
    представляет собой вспячивание
    внутренней цитоплазмы цитоплазматической
    мембраны. На мезасоме находятся
    окислительно-восстановительные
    ферменты, принимающие участие в дыхании
    клетки. Основная функция мезасом –
    энергетическая. Назвают мезосомы
    силовыми станциями клетки. Кроме того,
    мезосомы участвуют в формировании
    клеточной перетяжки при делении клетки.

  3. Вакуоли (появляются
    с возрастом) – полости, заполненные
    клеточным соком. Они поддерживают
    осмотическое давление клетки, а также
    обезвреживают клетку от ядовитых
    продуктов жизнедеятельности.

  4. Хроматофоры –
    гранулы, содержащие в себе красящие
    вещества или пигменты, присущи только
    окрашенным формам бактерий. У бесцветных
    форм их нет.

Отличительные признаки растительной и животной клетки в таблице

Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:

Признак Растительная Животная
Получение питания Автотрофный.

Фотосинтезирует питательные вещества

Гетеротрофный. Не производит органику.
Хранение питания В вакуоли В цитоплазме
Запасной углевод крахмал гликоген
Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
Клеточный центр и центриоли У низших растений У всех типов
Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

Основные компоненты являются сходными как для частиц растительного, так и животного мира.

Характеристика, значение и использование веществ клеточной оболочки, качественные микрореакции.

В
состав клеточной
оболочки входят
целлюлоза, гемицеллюлозы, пектиновые вещества,
липиды и небольшое количество белка. 

Целлюлоза,
или
клетчатка
(C6H10O5)n

стойкий к щелочам, кислотам и ферментам
полимер, состоящий из остатков
b-Д-глюкопираноз. В среднем на молекулу
целлюлозы приходится 8 тыс. остатков
глюкозы. Целлюлоза является остатком
целлюбиозы. В качестве специфических
реактивов определяющих целлюлозу в
микроскопии используют раствор
хлор-цинк-йод, окрашивающий оболочки в
синий или фиолетовый цвет, а фуксин
кислый, вызывает ее покраснение.

Пектиновые
вещества (пектины)
 –
полисахариды, в основе которых лежит
полигалактуроновая (пектовая) кислота.
При взаимодействии с водой пектины
образуют гели, а с сахарозой в присутствии
органических кислот – студни. Гидрофильные
коллоиды клеточных оболочек и межклетников
удерживают воду, обеспечивая тургор
клеток. Пектиновые вещества срединных
пластинок склеивают клетку, ослабляют
взаимное давление, но не препятствуют
их росту. Разрушение межклеточного
вещества, ведущее к разъединению клеток,
называется мацерацией. Естественным
путем она происходит при переходе
протопектина в пектин в процессе
созревания сочных плодов. В фармации
пектины используют как основу для мазей,
эмульгатор, стабилизатор, компонент
пролонгации, фиксатор токсинов и
радионуклидов.

Гемицеллюлоза
(полуклетчатка)
 –
комплекс полисахаридов (ксиланы,
арабинаны, галактаны, мананы). При
гидролизе гемицеллюлоз образуется
Д-галактоза, Д-ксилоза, Д-арабиноза,
уроновые кислоты, Д-манноза и Д-глюкоза.Она
встречается до 30% в одревесневших частях
растений (например, в стержнях початков
кукурузы, соломе злаков).Появление в
составе оболочки минеральных веществ
и других модификаторов приводит к
вторичным изменениям химических,
механических и других свойств оболочки.

17.
Взаимосвязь и взаимодействие клеток в
растительном организме. Растительные
ткани: определение, классификация по
происхождению, морфологии, функциями,
положением в органах; диагностические
признаки.

Настоящей
тканью
называют
группу клеток, имеющих общее происхождение,
сходное строение и выполняемые функции.
Настоящие ткани присущи высшим растениям,
но их формирование отмечено у
высокоорганизованных низших, например,
багрянок и бурых водорослей. У более
примитивных низших растений и грибов
имеются ложные
ткани
,
отличающиеся тем, что клетки индивидуальны
по своему происхождению.

На
основе морфологических признаков ткани
подразделяют на живые

протопластом) и мертвые
(без
протопласта), паренхимные
и
прозенхимные
(по
форме клеток), тонкостенные
тонкими оболочками) и толстостенные

утолщенными оболочками), плотные
(без
межклетников) и рыхлые
межклетниками). Различают образовательные
ткани
и
их производные — постоянные
ткани
.
В свою очередь, постоянные ткани
подразделяются на первичные
ткани,
формирующиеся
при дифференциации первичных
образовательных тканей, и вторичные
ткани,
возникшие
из вторичных образовательных или
основных тканей. По строению и выполняемым
функциям постоянные ткани объединяют
в группы: защитные
ткани

покровные, механические, и ткани,
обеспечивающие обмен веществ

всасывающие, проводящие, выделительные,
основные.

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы,
  • мышечная мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани,
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль,
  • нервная образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Соединительная ткань

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами

Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Дифференцировка бактерий по биохимическому составу

Метод, позволивший различать прокариотов по особенностям химического строения их оболочки, был предложен датским учёным Г. Грамом ещё в конце XIX века. Он установил, что одни виды бактерий хорошо окрашиваются анилиновыми красителями и образуют стойкие соединения фиолетового цвета, входящие в состав клеточной оболочки.

Такие прокариоты были названы грамположительными: например, стафилококки и стрептококки. Все они являются чувствительными к антибиотикам ряда пенициллина и актиномицина. Другие бактерии, названные грамотрицательными, не окрашиваются метиловым фиолетовым. Они резистентны к пенициллину, так как имеют прочную капсулу и малопроницаемую клеточную стенку. К ним относятся сальмонелла, шигелла, хеликобактер

Клеточная оболочка бактерий, имеющая различный химический состав, служит важной микробиологической характеристикой, которую учитывают в фармакологии и медицине

Основные компоненты прокариотической клетки

Основными компонентами прокариотической клетки являются:

  • Клеточная стенка, которая окружает клетку извне, защищает её, придаёт устойчивую форму, предотвращающую от осмотического разрушения. У бактерий клеточная стенка состоит из муреина, построенного из длинных полисахаридных цепей, соединенных между собой короткими пептидными перемычками. Клеточная стенка архей не содержит муреина, а построена в основном из разнообразных белков и полисахаридов.
  • Жгутики — органеллы движения некоторых бактерий. Бактериальный жгутик построен значительно проще эукариотического, и он в 10 раз тоньше, внешне не покрыт плазматической мембраной и состоит из одинаковых молекул белков, которые образуют цилиндр. В мембране жгутик закреплен при помощи базального тела.
  • Плазматическая и внутренние мембраны. Общий принцип устройства клеточных мембран не отличается от эукариот, однако химическом составе мембраны есть немало различий, в частности, в мембранах прокариот отсутствуют молекулы холестерина и некоторых липидов, присущих мембранам эукариот. Большинство прокариотических клеток (в отличие от эукариотических) не имеют внутренних мембран, которые разделяют цитоплазму на отделы (компартменты). Только у некоторых фотосинтетических и аэробных бактерий плазмалемма образует вгибание внутрь клетки, что выполняет соответствующие метаболические функции.
  • Нуклеоид — не ограниченный мембранами участок цитоплазмы, в котором расположена кольцевая молекула ДНК — «бактериальная хромосома», где хранится весь генетический материал клетки.
  • Плазмиды — небольшие дополнительные кольцевые молекулы ДНК, несущие обычно всего несколько генов. Плазмиды, в отличие от бактериальной хромосомы, не являются обязательным компонентом клетки. Обычно они придают бактерии определенные полезные для неё свойства, такие как устойчивость к антибиотикам, способность усваивать из среды определенные энергетические субстраты, способность инициировать половой процесс и тд.
  • Рибосомы прокариот, как и у всех других живых организмов, отвечают за осуществление процесса трансляции (одного из этапов биосинтеза белка). Однако бактериальные рибосомы несколько меньше, чем эукариотические и имеют другой состав белков и РНК. Из-за этого бактерии, в отличие от эукариот, чувствительны к таким антибиотикам, как эритромицин и тетрациклин, которые избирательно действуют на прокариотические рибосомы.
  • Споры (эндоспоры) — окруженные плотной оболочкой структуры, содержащие ДНК бактерии и обеспечивающее выживание в неблагоприятных условиях. К образованию спор способны лишь некоторые виды прокариот, например в частности возбудитель столбняка, возбудитель ботулизма и возбудитель сибирской язвы. Для образования эндоспоры клетка реплицирует свою ДНК и окружает копию плотной оболочкой, из созданной структуры удаляется избыток воды, и в ней замедляется метаболизм. Споры бактерий могут выдерживать довольно жесткие условия среды, такие как длительное высушивание, кипячение, коротковолновое облучение.

Цитоплазма

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено.

Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Функции клеточной стенки

Оболочки разных клеток совместно обеспечивают всему растению и его отдельным частям механическую прочность и опору. Это функция клеточной стенки аналогична одной из функций скелета животных. Однако она не единственная.

Жесткость стенок препятствует растяжению клеток и их разрыву. В результате по физическим законам в клетки может путем осмоса поступать вода. Для травянистых растений тургоцентричность клеток является единственной их опорой.

Микрофибриллы целлюлозы ограничивают рост клеток и определяют их форму. Если микрофибриллы окольцовывают клетку, то она будет расти в длину (поперек направления волокон).

Связанные клеточные стенки образуют апопласт, по которому передвигается вода и минеральные вещества. Плазмодесмы связывают содержимое разных клеток в единую систему — симпласт.

Стенки сосудов ксилемы, трахеид, ситовидных трубок выполняют транспортную функцию.

Наружные клеточные стенки эпидермальных клеток покрыты воском (кутикулой). С одной стороны, он препятствует испарению воды, с другой – проникновению вредных микроорганизмов.

У некоторых растений в определенных клетках оболочки видоизменяются и служат местом запаса питательных веществ.

Плазмодесмы

Протопласты соседних клеток связаны между собой тонкими нитями цитоплазмы — плазмодесмами. Эти структуры присущи только растительным клеткам.

В нормальном состоянии плазмодесмы невидимы в световой микроскоп, однако, если стимулировать набухание оболочки плазмодесмы, становятся заметными, поэтому выявлены и описаны они были уже достаточно давно. Хотя детали строения плазмодесм изучены сравнительно недавно с помощью электронного микроскопа. Под электронным микроскопом плазмодесмы выглядят как узкие каналы (диаметром от 30 до 60 нм), выстланные плазматической мембраной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера — десмотрубочка, которая сообщается с эндоплазматическим ретикулом обеих смежных клеток.

Десмотрубка напоминает цитоплазматические микротрубочки или жгутики простейших. Она состоит из 11 спирально расположенных белковых субъедениц.

Вокруг десмотрубки локализируется цитоплазма, которая во многих типах плазмодесм непосредственно не соединяется с цитоплазмой клеток.

В плазмодесмах обнаружена АТФ — азная активность.

Наличие плазмодесм обеспечивает непрерывность цитоплазмы клеток, составляющих органы и ткани. Такая непрерывная система называется симпласт. Кроме того, за счёт плазмодесм обеспечивается единство эндоплазматической сети, переходящей из клетки в клетку. Единая эндоплазматическая сеть получила название эндопласт.

Таким образом, выделяется три непрерывных компартмента в растительных тканях — это:

  • единая цитоплазма — симпласт,
  • непрерывный ретикулум — эндопласт и соприкасающиеся между собой клеточные стенки, вместе с межклетниками составляют непрерывную систему — апопласт.

Размещаются плазмодесмы в стенке либо группами, либо равномерно разбросаны по всей стенке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector