Функции и строение клеточной мембраны

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Химический состав и строение плазматической мембраны

Плазматическая мембрана, окружая каждую клетку, отделяет ее содержимое от внеклеточного пространства. В состав мембраны входят липиды, белки и углеводы. Основой плазмалеммы является двойной слой из фосфолипидов. Молекула фосфолипида имеет небольшую гидрофильную «головку» (остатки глицерина, ортофосфорная кислота и дополнительные соединения) и два (реже один) длинных гидрофобных «хвоста» (остатки жирных кислот). Гидрофобные части молекул объединяются с другими гидрофобными соединениями, а гидрофильные — с гидрофильными, формируя двойные слои, как показано на рисунке.

Схема расположения фосфолипидов в мембране клетки

В каждом слое гидрофильные «головки» молекул обращены к водной среде (внеклеточное пространство или цитоплазма), а их «хвосты» ориентированы внутрь толще мембраны. Такую структуру имеют все биологические мембраны, в том числе и внутриклеточных органелл.

Кроме фосфолипидов в состав плазматической мембраны входят другие липиды (в частности, холестерол) и значительное количество белков (до 50% от массы мембраны). Поскольку белковые молекулы по размеру больше, чем фосфолипидные, на один белок в составе мембраны приходится около 50 фосфолипидов. В зависимости от функций клетки количество и состав мембранных белков существенно различаются. По расположению в мембране разделяют белки, пронизывающие толщу мембраны (внутренние или интегральные) и такие, которые размещены с внутренней или внешней стороны мембраны (внешние или периферийные). Мембранные белки могут соединяться с углеводами (вспомните, как они называются) как на иллюстрации ниже.

Схема строения плазматической мембраны

Такая модель строения биологических мембран получила название жидкостно-мозаичной: большинство липидов мембраны находятся в жидком состоянии и лишь около 30% липидов прочно соединены с внутренними белками в комплексные соединения.

С плазматическими мембранами связан надмембранный комплекс — набор структур, расположенных снаружи клеток.

Надмембранный комплекс животных клеток представляет собой углеводороды части гликопротеинов и гликолипидов мембран, образующих наружный слой клетки — гликокаликс, который  выполняет рецепторную и маркерную функции, а также участвует в обеспечении избирательности транспорта веществ и пристеночном (примембранном) пищеварении.

У бактерий, растений и грибов надмембранный комплекс представлен клеточной стенкой — жестким каркасом, окружающим клетки. Клеточные стенки разных организмов имеют разную химическую природу. Вы уже знаете, что основным веществом стенок растительных клеток является целлюлоза. У грибов эта структура сформирована другим полисахаридом — хитином. Бактериальные клетки окружены стенками из пептидогликана  (также известный как муреин) — вещества сложной химической природы (содержит короткие пептиды и остатки углеводов).

Разница между клеточной мембраной и плазменной мембраной

Определение

Клеточная мембрана: Клеточная мембрана представляет собой полупроницаемую мембрану, которая окружает цитоплазму клетки.

Плазматическая мембрана: Плазменная мембрана является полупроницаемым барьером, который окружает клеточные компартменты.

переписка

Клеточная мембрана: Клеточная мембрана охватывает всю клетку.

Плазматическая мембрана: Плазматическая мембрана охватывает клетки или органеллы.

Состав

Клеточная мембрана: Клеточная мембрана состоит из фосфолипидного бислоя со встроенными белками.

Плазматическая мембрана: Состав плазматической мембраны может изменяться в зависимости от требований клеточного компартмента, который закрыт плазматической мембраной.

Заключение

Клеточная мембрана и плазматическая мембрана представляют собой два типа границ, которые окружают клетку и клеточные компартменты. Оба типа мембран изготовлены из фосфолипидного бислоя. Клеточная мембрана окружает клетку, в то время как плазматическая мембрана окружает клеточные компартменты. Структура плазматической мембраны может изменяться в зависимости от требований типа клеточного компартмента. Основное различие между клеточной мембраной и плазматической мембраной заключается в типе компартментов, окруженных мембраной каждого типа.

Основное отличие — клеточная мембрана от плазменной мембраны

Клеточная мембрана и плазматическая мембрана являются двумя терминами, которые используются взаимозаменяемо для описания различных границ клетки. главное отличие между клеточной мембраной и плазматической мембраной является то, что клеточная мембрана является границей клетки, тогда как плазматическая мембрана может быть границей клетки или органеллы, Как клеточная мембрана, так и плазматическая мембрана избирательно проницаемы для молекул. В клетках животных клеточная мембрана является самым внешним слоем, который отделяет клеточное содержимое от внешней среды. Растительные, грибковые и бактериальные клетки состоят из клеточной стенки, окружающей клеточную мембрану.

Ключевые области покрыты

1. Что такое клеточная мембрана      — определение, состав, функция2. Что такое плазменная мембрана      — определение, состав, функция3. Каковы сходства между клеточной мембраной и плазменной мембраной      — Краткое описание общих черт4. В чем разница между клеточной мембраной и плазменной мембраной      — Сравнение общих черт

Ключевые слова: клетка, клеточная мембрана, цитоплазма, липиды, органеллы, фосфолипидный бислой, плазменная мембрана, белки

Структура клеточной мембраны

Плазматическая мембрана в основном состоит из смеси белков и липидов. В зависимости от расположения и роли мембраны в организме, липиды могут составлять от 20 до 80 процентов мембраны, а остальная часть приходится на белки. В то время как липиды помогают придать мембране гибкость, белки контролируют и поддерживают химический состав клетки, а также помогают в переносе молекул сквозь мембрану.

Липиды мембран

Фосфолипиды являются основным компонентом плазматических мембран. Они образуют липидный бислой, в котором гидрофильные (притянутые к воде) участки «головы» спонтанно организуются, чтобы противостоять водному цитозолю и внеклеточной жидкости, тогда как гидрофобные (отталкиваемые водой) участки «хвоста» обращены от цитозоля и внеклеточной жидкости. Липидный бислой является полупроницаемым, позволяя только некоторым молекулам диффундировать через мембрану.

Холестерин является еще одним липидным компонентом мембран животных клеток. Молекулы холестерина избирательно диспергированы между мембранными фосфолипидами. Это помогает сохранить жесткость клеточных мембран, предотвращая слишком плотное расположение фосфолипидов. Холестерин отсутствует в мембранах растительных клеток .

Гликолипиды расположены с наружной поверхности клеточных мембран и соединяются с ними углеводной цепью. Они помогают клетке распознавать другие клетки организма.

Белки мембран

Клеточная мембрана содержит два типа ассоциированных белков. Белки периферической мембраны являются внешними и связаны с ней путем взаимодействия с другими белками. Интегральные мембранные белки вводятся в мембрану, и большинство проходит сквозь нее. Части этих трансмембранных белков расположены по обе ее стороны.

Белки плазматической мембраны имеют ряд различных функций. Структурные белки обеспечивают поддержку и форму клеток. Белки рецептора мембраны помогают клеткам контактировать со своей внешней средой с помощью гормонов, нейротрансмиттеров и других сигнальных молекул. Транспортные белки, такие как глобулярные белки, переносят молекулы через клеточные мембраны посредством облегченной диффузии. Гликопротеины имеют прикрепленную к ним углеводную цепь. Они встроены в клеточную мембрану, помогая в обмене и переносе молекул.

Мембраны органелл

Некоторые клеточные органеллы также окружены защитными мембранами. Ядро, эндоплазматический ретикулум, вакуоль, лизосома и аппарат Гольджи являются примерами окруженных мембраной органелл. Митохондрии и хлоропласты покрыты двойной мембраной. Мембраны различных органелл различаются по молекулярному составу и хорошо подходят для выполнения своей роли. Они важны для нескольких жизненно важных функций клеток, включая синтез белка, производство липидов и клеточное дыхание.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами

Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет, за исключением низших водорослей). Центриоль представляет собой цилиндр, боковая поверхность которого образована микротрубочками.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Рисунок 8. Центриоли.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей.

Белки плазматической мембраны

Что касается белков, входящих в строение плазматической мембраны, то это в основном гликопротеины.

В зависимости от расположения в оболочке их можно разделить на две группы: периферические и интегральные. Первые — это те, которые находятся на поверхности мембраны, а вторые — те, которые пронизывают всю толщину оболочки и находятся внутри липидного слоя.

В зависимости от функций, которые выполняют белки, их можно разделить на четыре группы: ферменты, структурные, транспортные и рецепторные.

Все белки, которые находятся в структуре плазматической мембраны, химически не связаны с фосфолипидами. Поэтому они могут свободно перемещаться в основном слое мембраны, собираться в группы и т. д. Вот почему строение плазматической мембраны клетки нельзя назвать статичным. Оно динамично, так как все время изменяется.

Что такое клеточная мембрана

Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.

Структура клеточной мембраны

Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.

Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.

Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1. 

Рисунок 1: Подробная схема клеточной мембраны

Состав клеточной мембраны

Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.

Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.

Функция клеточной мембраны

Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.

Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.

Мембрана

Снаружи находится плазматическая мембрана эукариотической клетки или плазмалемма, которая осуществляет выборочную взаимосвязь органелл с внешней средой. Поверхностная мембрана имеет жидко-мозаичную структуру, образованную:

  • двумя слоями липидов (внешним и внутренним);
  • белками (60 % мембраны).

Липиды имеют гидрофильные головки и гидрофобные хвостики, которые обращены внутрь мембраны. Липиды плотно прилегают друг к другу, что обеспечивает мембране эластичность. Жёсткость придаёт встроенный в хвостики холестерин. Липиды защищают и ограничивают клетку.

Белки могут находиться на поверхности мембраны или быть интегрированными в неё.

В зависимости от вида белки осуществляют различные функции:

  • транспортную;
  • ферментативную;
  • рецепторную.

Рис. 1. Строение плазмалеммы.

Клетки растений сверху окружены жёсткой целлюлозной стенкой. У животных клеток поверхностный слой называется гликокаликсом, в состав которого входят углеводы, белки и жиры.

Что такое клеточная мембрана

Клеточная мембрана представляет собой полупроницаемую мембрану, которая окружает цитоплазму клетки. Он обеспечивает поддержку и помогает поддерживать форму клетки. Основной функцией клеточной мембраны является поддержание целостности внутренней части клетки. Клеточная мембрана пропускает только отобранные молекулы.

Рисунок 1: клеточная мембрана

Клеточная мембрана в основном состоит из липидов и белков. Липиды придают гибкость мембране, в то время как белки служат переносчиками и рецепторами. Фосфолипиды являются основным липидным компонентом клеточной мембраны. Они образуют липидный бислой, где гидрофильные части липидных молекул располагаются по направлению к цитозольным и внеклеточным частям клетки. Гидрофобные части расположены внутри бислоя, образуя гидрофобное ядро. Из-за амфипатической природы (содержащей как гидрофильные, так и гидрофобные части в бислое) липидного бислоя, только маленькие гидрофобные молекулы могут проходить через клеточную мембрану. Другие крупные гидрофильные молекулы и ионы транспортируются белками в клеточной мембране. Интегральные белки и периферические белки являются двумя белковыми компонентами клеточной мембраны.

История открытия цитолеммы

Как ни странно, но такой важный органоид был открыт учеными лишь в начале прошлого столетия. В процессе его открытия можно выделить следующие этапы:

  1. В 1925 году два немецких биолога И. Гортер и А. Грендель, проведя обширное исследование эритроцитов (клеток крови), смогли получить их оболочку. Это было первым шагом к пониманию строения плазмалеммы. Было выяснено, что ее структура представляет собой двойной сплошной слой. Причем, в силу неразвитости технологий, немецкие ученые допустили две серьезные ошибки, которые существенно корректировали значение результатов, одна в сторону увеличения, а другая, наоборот, уменьшения. И благодаря этому результаты получились поразительно точными, даже сверхточными для того времени.
  2. Спустя десятилетие другие исследователи, Доусон и Даниэлли, получили результаты, говорящие о том, что структура клеточной мембраны включает белки, а не только липиды. Они представили макет модели, напоминавший бутерброд, с двух сторон хлеб – белково-липидные слои, а внутри вместо начинки пустота.
  3. В середине прошлого века, с открытием электронного микроскопа, ученые смогли рассмотреть цитолемму клеток и пришли к выводу, что теория Доусона и Даниэлли была верной, плазмалемма действительно представляла собой два слоя, а между ними прозрачное пространство.
  4. В 1960 году была разработана теория, согласно которой плазмалемма состоит из трех слоев. Автором теории выступал микробиолог из Америки Д. Робертсон. Однако, данная теория многократно подвергалась критике со стороны научного сообщества, ведь такое строение крайне неудобно с точки зрения проводимости веществ. Не совсем было понятно, чем же тогда отличаются клеточная мембрана и клеточная стенка.
  5. Наконец, в 1972 году учеными Сингером и Николсоном была представлена другая модель плазмалеммы. Она показывала, что плазмалемма наполнена жидкостью, а также асимметрична и пребывает в постоянном движении.

Смотрите видео о строении плазматической мембраны клетки.

Что такое супердиффузионные мембраны

Диффузионная мембрана – это специальный материал, имеющий двух-, трех- или даже четырехслойную структуру, основу которого составляет нетканый холст. Диффузионные мембраны применяют для защиты утепляющего слоя от проникновения в его толщу испарений. Также, диффузионные мембраны являются превосходной защитой от воды и ветра. При создании крыши, в полном объеме соответствующей всем современным требованиям, каждый застройщик обязательно столкнется с таким понятием, как «кровельный пирог». Для того чтобы крыша выполняла все возложенные на нее функции в течение всего срока эксплуатации, кроме основного кровельного покрытия, необходимо использовать некоторые дополнительные материалы, к числу которых относятся супердиффузионные мембраны. Супердиффузионные мембраны можно использовать при создании кровельного пирога в любой климатической зоне нашей страны. Роль этого дополнительного слоя чрезвычайно важна, так именно его присутствие позволяет снизить силу неблагоприятных воздействий, вызванных экстремальными погодными условиями, а также нивелировать недочеты и ошибки, возникшие в ходе неправильного монтажа кровли. 

Мембраны животной клетки

Таковы функции плазматической мембраны в клетке, где она играет важную роль для каждой органеллы. Причем ряд функций следует объединить в одну – в защитную. В частности барьерная и механическая функции объединены в защитную. Более того, функции плазматической мембраны в растительной клетке практически идентичны таковым в животной и бактериальной.

Животная клетка является наиболее сложной и высокодифференцированной. Здесь располагается гораздо больше интегральных, полуинтегральных и поверхностных белков. В целом у многоклеточных организмов структура мембраны всегда сложнее, чем у одноклеточных. И то, какие функции выполняет плазматическая мембрана конкретной клетки, определяет, будет ли она отнесена к эпителиальной, соединительной или возбудимой ткани.

Клеточный цикл

Согласно научным источникам, в клеточный цикл входят все периоды развития клетки от момента деления материнской и образования дочерней до гибели (или деления). Клеточный цикл кратко можно охарактеризовать несколькими точными параметрами.

Длительность

Существуют как быстро делящиеся — 12-36 ч (например, кроветворные), так и медленно воспроизводящиеся. Средний цикл, свойственный многим организмам — от 10 до 25 часов.

Фазы клеточного цикла

Жизнь клеточного организма можно разделить на несколько фаз.

Фазы:

  1. Интерфаза, или клеточный рост. В этот период происходит быстрая наработка веществ (ДНК, белков и т. д.) и подготовка к делению. Интерфазу можно условно разделить на подпериоды. Это G1-фаза (начальный рост), S-фаза (репликация ДНК) и G2-фаза (непосредственно подготовка к митозу).
  2. Фаза митоза, или фаза М. Это время жизни также можно разделить на две стадии – кариокинез (деление ядра) и цитокинез (деление цитоплазмы).

Клеточный цикл — высокоорганизованная система.

Регуляция клеточного цикла

Все периоды клеточного цикла регулируются особыми белками — циклин-зависимыми киназами и циклинами. Содержание этих белков варьируется на разных стадиях жизненного цикла. После митотического деления они полностью разрушаются.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Общее представление о функциях цитолеммы

Плазматическая мембрана в том виде, в котором она присутствует в животной клетке, характерна для множества организмов из разных царств. Бактерии и простейшие, чьи организмы представлены одной-единственной клеткой, имеют цитоплазматическую мембрану. А животные, грибы и растения как многоклеточные организмы не утратили ее в процессе эволюции. Однако у разных царств живых организмов цитолемма несколько различается, хотя функции ее все равно одинаковы. Их можно разделить на три группы: на разграничительные, транспортные и коммуникативные.

К группе разграничительных функций относится механическая защита клетки, поддержание ее формы, ограждение от внеклеточной среды. Транспортную группу функций мембрана играет за счет наличия специфических белков, ионных каналов и переносчиков определенных веществ. К коммуникативным функциям цитолеммы стоит отнести рецепторную. На поверхности мембраны существует совокупность рецепторных комплексов, посредством которых клетка участвует в механизмах гуморальной передачи информации

Однако важно еще и то, что плазмолемма окружает не только клетку, но и некоторые ее мембранные органеллы. В них она играет такую же роль, как в случае с целой клеткой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector